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Abstract 
 

Landslides are among the most devastating natural hazards, causing significant human casualties 

and economic losses worldwide. With the growing impact of climate change on slope instability, the 

demand for accurate and scalable methods for landslide detection and prediction has intensified. 

This study systematically reviews and synthesizes recent advancements in applying machine 

learning and deep learning techniques for landslide hazard assessment, evaluating methodologies, 

challenges, and future directions. A systematic review was conducted using a detailed protocol, 

including a comprehensive literature search, defined inclusion and exclusion criteria, and 

structured data extraction. Studies were classified into three domains: landslide detection, 

susceptibility mapping, and temporal forecasting. Key performance indicators such as accuracy, 

precision, recall, F1-score, and area under the curve were synthesized to evaluate model 

performance. The findings reveal that traditional machine learning methods, notably Support 

Vector Machines and Random Forests, consistently achieve high accuracy. Deep learning 

architectures, particularly Convolutional Neural Networks and U-Net, outperform traditional 

approaches in segmentation accuracy and robustness across diverse spectral and topographic 

conditions. The integration of multimodal remote sensing data, such as optical imagery, LiDAR, and 

SAR, significantly improves model reliability by capturing complementary landslide characteristics. 

Despite these advancements, challenges including limited labelled data, class imbalance, and 

generalization issues persist. Addressing these limitations requires the development of advanced 

model architectures, data augmentation strategies, and the implementation of transfer learning and 

domain adaptation. In conclusion, machine learning and deep learning have substantially advanced 

landslide hazard assessment, yet further efforts are needed to enhance model scalability and 

operational applicability. 

 

Keywords: Landslide Detection; Machine Learning; Deep Learning; Susceptibility Mapping; 

Remote Sensing Integration. 
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Introduction 
Landslides represent one of the most destructive natural hazards, causing profound impacts on 

human life, infrastructure, and economic activities worldwide. Over the past three decades, 

global landslides have been responsible for thousands of deaths and billions of dollars in 

damages annually, emphasizing their significance as a persistent geohazard [1, 2]. The 

implications of landslides extend beyond immediate loss, often triggering long-term socio-

economic disruptions in affected regions. The urgency to address this issue has intensified with 

the observable patterns of climate change, which acts as a catalyst, increasing the frequency and 

severity of extreme weather events, such as intense rainfall and rapid temperature fluctuations. 

These climatic shifts exacerbate slope instability and thus elevate landslide risks, further 

amplifying the need for improved prediction, monitoring, and mitigation strategies [3]. 

Recent literature has emphasized the growing relevance of climate-induced landslide 

hazards, particularly as traditional risk assessment models struggle to accommodate the 

nonlinear, dynamic nature of environmental transformations. As pointed out by [3], excessive 

rainfall, snowmelt, and anthropogenic alterations significantly destabilize slopes, leading to an 

observable surge in mass wasting events. Moreover, the critical role of early warning systems, 

efficient hazard zoning, and real-time monitoring has been underscored as essential components 

of disaster risk reduction. Remote sensing technologies, offering large-scale, repeatable, and 

high-resolution observations, have substantially enhanced landslide detection and susceptibility 

mapping capabilities [3, 4] . Nevertheless, the complexities inherent to accurately capturing and 

predicting landslide behaviour across diverse terrains and climatic zones continue to present 

formidable challenges. 

The primary research problem in landslide studies centres on the difficulty of accurately 

identifying, predicting, and assessing landslide occurrences under rapidly changing 

environmental conditions. Traditional approaches, typically grounded in expert-driven 

interpretations and statistical analyses, are often constrained by inherent subjectivity, high 

labour requirements, and limited scalability [5, 6]. While effective for localized assessments, 

these methods often lack robustness when extrapolated to larger or more heterogeneous regions. 

Their predictive capability is further limited by their inability to dynamically adapt to 

environmental variability induced by climatic or anthropogenic factors. 

In response to these challenges, the research community has increasingly explored remote 

sensing-based techniques and advanced computational methods as general solutions. Remote 

sensing, through satellite imagery, LiDAR, synthetic aperture radar (SAR), and aerial 

photogrammetry, has revolutionized landslide mapping and monitoring. These technologies 

enable near-real-time observations of slope conditions, offering critical data for early warning 

and post-event assessment [3, 7]. Concurrently, the adoption of machine learning (ML) 

techniques has provided new avenues for enhancing predictive modelling by learning complex, 

nonlinear relationships between environmental variables and landslide occurrences. ML's data-

driven nature, capacity to handle large and diverse datasets, and adaptability to complex 

patterns offer considerable advantages over traditional statistical methods. 

Specifically, in recent years, researchers have leveraged various machine learning 

algorithms—such as Support Vector Machines (SVM), Random Forest (RF), Artificial Neural 

Networks (ANN), and Decision Trees (DT)—to improve the spatial and temporal forecasting of 

landslides. Deep learning models, particularly Convolutional Neural Networks (CNN) and U-Net 

architectures, have further advanced the field by enabling automated feature extraction from 

remote sensing imagery with superior accuracy [3, 8]. These methods allow for enhanced 

detection of landslide scars, susceptibility mapping, and dynamic risk assessments. However, 

despite these advancements, critical issues persist, such as overfitting, handling sample 

imbalance, generalizing across regions, and integrating heterogeneous data sources effectively. 
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Such challenges underscore the necessity for continuous methodological improvements and the 

development of more resilient, generalized models. 

Several studies have directly addressed these methodological gaps by proposing ensemble 

learning methods, multimodal data integration frameworks, and transfer learning strategies. For 

instance, research integrating optical and radar data has demonstrated improved detection 

capabilities compared to single-sensor approaches [3]. Other works have highlighted the 

importance of balanced sampling, feature selection optimization, and hybrid modelling 

techniques combining multiple algorithms to enhance predictive performance and reduce bias 

[9]. These initiatives collectively represent significant steps toward overcoming the intrinsic 

limitations of earlier models. Nevertheless, despite the progress, there remains a notable gap in 

ensuring consistent model performance across different geological, climatic, and socio-

environmental contexts, especially under the influence of rapidly changing environmental 

drivers. 

An overview of closely related literature suggests that while machine learning methods have 

notably advanced landslide detection and prediction, current solutions often remain context-

specific and lack broad generalization capabilities. The majority of existing studies have been 

constrained to specific case studies with homogeneous environmental characteristics, limiting 

their applicability elsewhere. Moreover, most models predominantly utilize supervised learning 

approaches, which are heavily dependent on the availability of high-quality labelled data—a 

resource often scarce in landslide-prone, remote, or data-poor regions. This reliance on 

extensive ground-truth data and the frequent absence of standardized performance evaluation 

frameworks point to a critical research gap. 

Addressing these limitations, this study aims to systematically review and synthesize the 

developments in machine learning applications for landslide detection, susceptibility 

assessment, and prediction, focusing on the integration of remote sensing data and multimodal 

learning frameworks. The novelty of this work lies in its comprehensive evaluation of both 

traditional ML methods and emerging deep learning strategies, emphasizing comparative 

performance, robustness across different environments, and challenges related to data 

heterogeneity. It further proposes a critical analysis of future directions, highlighting the 

potential of multi-source data fusion, domain adaptation, and real-time monitoring systems. By 

consolidating insights from diverse studies, this review aspires to provide a foundational 

reference for researchers and practitioners aiming to advance landslide modelling 

methodologies and contribute toward more resilient and adaptive disaster risk reduction 

frameworks. 

 

Systematic Review Protocol 
This review adhered to a systematic protocol based on PRISMA guidelines. The literature search 

was conducted across three academic databases: Scopus, Web of Science, and Google Scholar. 

The following search string was used: "landslide AND (machine learning OR deep learning OR 

CNN OR SVM OR U-Net OR RNN OR LSTM) AND (remote sensing OR SAR OR LiDAR)". The 

search covered publications from 2013 to 2024, reflecting the surge of AI adoption in geospatial 

analysis. 

A total of 412 articles were initially retrieved. After removing duplicates and applying 

inclusion criteria (peer-reviewed, English language, focused on ML/DL methods for landslide 

detection or prediction), 93 studies were retained for full-text review. 

Inclusion Criteria: 

• Studies applying supervised ML/DL for landslide detection, susceptibility, or 

forecasting 
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• Use of remote sensing data 

• Reported performance metrics (accuracy, F1-score, AUC, etc.) 

Exclusion Criteria: 

• Purely geotechnical models without remote sensing 

• Non-English publications 

• Gray literature 

Data extraction included: model types, input features, geographic location, dataset size, 

performance indicators, and modality used. 

 

Overview of Machine Learning Techniques for Landslide 

Studies 
Recent advancements in machine learning (ML) have significantly transformed landslide 

detection, susceptibility mapping, and hazard forecasting. Traditional ML algorithms, 

particularly Support Vector Machines (SVM), Random Forests (RF), and ensemble learning 

methods, have been extensively utilized for various landslide prediction tasks (Figure 1). 

Studies consistently report high-performance outcomes, with accuracy metrics often exceeding 

85% and Area Under the Curve (AUC) values frequently above 0.86, demonstrating their 

effectiveness in different geographical and climatic conditions [10]. 

 

Figure 1. Recent advancements in machine learning (ML) for landslide studies 

Support Vector Machines, known for their strong generalization capabilities in high-

dimensional spaces, have been widely applied for pixel-based landslide classification tasks. RF 

models, leveraging ensemble learning from decision trees, offer robustness against overfitting 

and have become particularly popular due to their efficiency in handling nonlinear relationships 

among multiple environmental factors. Ensemble methods combining multiple classifiers, such 

as Gradient Boosting and AdaBoost, have shown improvements in sensitivity and specificity 

compared to single-model approaches [3, 11]. 

Table 1 presents a comparative analysis of major machine learning and deep learning 

models based on core performance indicators. Traditional ML models such as SVM and RF 

demonstrate high interpretability and relatively low computational complexity, making them 

ideal for rapid deployment in data-scarce settings. However, they rely on manual feature 

engineering and often exhibit limitations in capturing spatial complexities. In contrast, CNN and 

U-Net models show superior segmentation accuracy and generalization across varied terrains 

due to their ability to learn from raw image data. Nevertheless, these deep architectures require 
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large labelled datasets, higher computational resources, and are more prone to overfitting 

without appropriate regularization strategies. 

 

Table 1. Comparative Analysis of ML/DL Models for Landslide Detection and Prediction 

Model Accuracy 
Data 

Demand 
Interpretability 

Generaliza

bility 

Comput

ational 

Cost 

Use Case 

SVM High Moderate High Moderate Low 
Susceptibility 

mapping 

Random 

Forest 
High Low Moderate Moderate Low 

Broad 

classification 

CNN Very High High Low High High 
Scar detection, 

segmentation 

U-Net Very High High Low Very High 
Very 

High 

Pixel-level 

segmentation 

RNN / 

LSTM 
Moderate 

Very 

High 
Low 

Underexplo

red 
High 

Temporal 

landslide 

forecasting 

 

Despite the success of these traditional methods, limitations remain, particularly regarding 

model sensitivity to class imbalance and their dependence on handcrafted feature extraction, 

which can limit adaptability under varying environmental and data conditions [10]. 

 

Advancements through Deep Learning Architectures 
Deep learning (DL) architectures, particularly Convolutional Neural Networks (CNN) and U-Net 

models, have emerged as significant breakthroughs in landslide research, providing superior 

performance in feature extraction, spatial pattern recognition, and generalization as can be seen 

in Figure 2. Unlike conventional ML models that rely on manual feature engineering, DL 

models autonomously learn hierarchical feature representations, leading to improved accuracy 

and robustness. 

Convolutional Neural Networks have been successfully applied for landslide scar detection 

and mapping from high-resolution optical imagery. Studies demonstrate that CNNs not only 

improve detection accuracy but also enhance the capability to capture complex landslide features 

over heterogeneous landscapes [12, 13]. U-Net, initially proposed for biomedical image 

segmentation, has been increasingly adopted for semantic segmentation tasks in landslide 

mapping. Its encoder-decoder structure with skip connections enables precise pixel-level 

classification, even under varying spectral conditions. 

Research by Zhang et al. [14]  shows that U-Net significantly outperformed traditional ML 

algorithms in both segmentation accuracy and generalization, achieving higher F1-scores and 

AUC values across diverse test areas. Similarly, Vega et al. [15] highlight U-Net’s superior 

performance, noting its resilience to spectral variability and capacity to delineate landslide 

boundaries more accurately than conventional classifiers. 
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Figure 2. Deep Learning in Landslide Research 

 

Integration of Remote Sensing Data Sources 
Optical imagery, particularly from sensors like Landsat, Sentinel-2, and WorldView, remains the 

most common remote sensing data source for landslide studies (Figure 3). Its widespread 

availability, high spatial resolution, and rich spectral information have facilitated numerous ML 

applications. However, optical data alone often struggle under cloud cover or dense vegetation, 

limiting its effectiveness in certain environments. 

 

 

Figure 3. Comparison of Optical Imagery Sensors 

To address these limitations, recent studies have integrated optical imagery with other 

remote sensing modalities, such as LiDAR and Synthetic Aperture Radar (SAR). LiDAR data, 

offering precise topographic information through high-resolution Digital Elevation Models 

(DEMs), enhance landslide susceptibility mapping by providing detailed slope, curvature, and 

elevation features [3]. SAR data, capable of penetrating clouds and providing information on 

surface deformation, complements optical imagery, particularly for temporal monitoring of 

landslide-prone areas. 

The integration of these multimodal datasets has been shown to significantly improve model 

robustness and predictive accuracy. Mandlburger et al. [16] emphasized that models 

incorporating LiDAR-derived features with optical and SAR inputs achieved superior 

performance compared to single-sensor approaches, especially in complex terrains. The 

complementary nature of structural (LiDAR), spectral (optical), and deformation (SAR) 
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information allows ML models to better capture diverse landslide characteristics, reducing 

uncertainties in predictions. 

 

 

Figure 4. Performance Evaluation Metrics in Landslide Studies 

 

Key Performance Metrics in Evaluated Studies 
Based on Figure 4, performance evaluation in the reviewed studies was standardized around a 

core set of quantitative metrics, namely accuracy, precision, recall, F1-score, and Area Under the 

Curve (AUC) [3]. These metrics provided comprehensive insights into the detection and 

classification capabilities of various models. Accuracy, measuring the overall proportion of 

correctly classified instances, remained consistently high, often exceeding 85% across both 

traditional machine learning and deep learning studies. Precision, which evaluates the 

proportion of true positive detections among all positive predictions, indicated model 

effectiveness in avoiding false positives, while recall, or sensitivity, measured the model’s ability 

to identify all relevant positive instances, a critical aspect in landslide studies where missing 

events could lead to significant consequences. The F1-score, representing the harmonic mean of 

precision and recall, offered a balanced evaluation metric particularly valuable for addressing 

the imbalanced datasets common in landslide detection. AUC, capturing the trade-off between 

true positive and false positive rates, provided a threshold-independent assessment of model 

performance and frequently exceeded 0.86 in high-performing models [17]. Notably, studies 

employing multimodal data integration consistently reported improvements across all these 

metrics, with F1-scores and AUC values significantly higher than those achieved using optical 

imagery alone [18]. 

 



Zulhelmi, et. al. (2025) | Built Environment Innovations (BEI) 

Vol. 1, No. 1, pp. 51-63 

pg. 8 

 

Detection, Susceptibility Mapping, and Temporal 

Forecasting Outcomes 
In the detection category, ML and DL models demonstrated high competence in identifying 

landslides directly from remote sensing data (Figure 5). CNN-based approaches have 

demonstrated strong performance in mapping newly triggered landslides following earthquake 

and rainfall events, often achieving F1-scores exceeding 0.85. For instance, a comparative 

analysis by Oak et al. [19] evaluated four CNN-based semantic segmentation models—U-Net, 

LinkNet, PSPNet, and FPN—on satellite imagery from Bijie, China. The study found that the 

LinkNet model achieved the highest performance, with an accuracy of 0.974 and an F1-score of 

0.857. 

In another study [20], an improved Mask R-CNN model incorporating the Swin 

Transformer as a backbone network was employed to detect seismic landslides using UAV 

imagery from Wenchuan County, Sichuan Province, China. The model achieved an F1-score of 

0.902 and demonstrated strong generalizability when applied to post-earthquake imagery from 

Haiti 

 

 

Figure 5. Exploring AI in Landslide Prediction 

In temporal forecasting, although relatively fewer studies exist, promising developments 

have been noted with the application of Recurrent Neural Networks (RNN) and Long Short-

Term Memory (LSTM) models, which can effectively handle temporal sequences such as rainfall 

trends and ground deformation signals [11]. These approaches can handle sequential data, 

enabling the prediction of landslide occurrences based on historical rainfall or deformation 

patterns. However, challenges remain due to the scarcity of temporally rich datasets and the 

difficulty of integrating diverse temporal predictors effectively [11]. 

 

Contributions of Multimodal Data Integration 
The integration of multimodal datasets emerged as a critical advancement in landslide 

modelling. Studies combining optical imagery with LiDAR or SAR data consistently reported 

significant improvements in classification performance. LiDAR provides high-resolution 

elevation data that enable precise characterization of terrain features such as slope, curvature, 

and roughness—key factors in landslide initiation. When combined with optical imagery, which 

captures spectral characteristics of surface materials, the resulting models benefit from both 

spectral and topographic richness. For instance, Pereira et al. [21] demonstrated that integrating 
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LiDAR-derived Digital Terrain Models (DTMs) with optical data significantly improved 

landslide susceptibility mapping accuracy in mountainous regions. Their study highlighted that 

the model generated from LiDAR data achieved higher accuracy compared to models using 

Unmanned Aerial Vehicle (UAV) data, emphasizing the value of LiDAR in capturing detailed 

topographic information. SAR data, with its ability to penetrate cloud cover and provide surface 

deformation metrics through interferometric processing (InSAR), complements optical data by 

capturing precursory slope movements. Mondini et al. [22] reported that models incorporating 

Sentinel-1 SAR data alongside Sentinel-2 optical imagery achieved superior performance in early 

landslide detection, especially in humid tropical settings prone to cloud interference. Their 

systematic assessment of Sentinel-1 SAR C-band images demonstrated the potential of SAR data 

in detecting landslide events, particularly when optical data availability is limited. 

Such integration helps mitigate the limitations inherent in single-source data: optical 

imagery captures surface characteristics, LiDAR provides structural terrain information, and 

SAR detects ground movements. Multimodal fusion thus enables a more holistic representation 

of landslide phenomena, improving detection under varied environmental conditions. 

The success of multimodal approaches underscores the importance of data diversity for 

robust landslide modelling and highlights future opportunities for further leveraging emerging 

datasets, such as hyperspectral imagery and UAV-based photogrammetry. 

To support a coherent comparison across studies, we propose a conceptual framework 

linking three key components of landslide modelling using AI: 

1. Input Modalities: Optical (e.g., Sentinel-2), LiDAR, and SAR provide complementary 

spatial, structural, and deformation signals. 

2. Algorithmic Approaches: Traditional ML (e.g., RF, SVM) vs. Deep Learning (e.g., CNN, 

U-Net, LSTM). 

3. Performance Factors: Influenced by data availability, spatial resolution, class 

imbalance, generalizability, and computational constraints. 

Deep Learning models generally benefit more from multimodal data fusion and are better 

suited for complex terrains, whereas ML models remain preferable in data-constrained or real-

time operational contexts. Overfitting, model transferability, and segmentation accuracy vary 

based on this interaction. 

 

Discussion 
The findings of this systematic review affirm the significant progress made in applying machine 

learning (ML) and deep learning (DL) techniques for landslide detection, susceptibility 

mapping, and hazard forecasting. Nonetheless, despite notable achievements, critical challenges 

persist, impacting the reliability and generalizability of current models. A recurring limitation in 

landslide ML applications lies in the restricted availability of high-quality labelled data, often 

derived from manually interpreted landslide inventories [23]. The labour-intensive nature of 

inventory compilation and the occurrence of landslides as relatively rare events inherently result 

in small sample sizes and severely imbalanced datasets. This class imbalance—where non-

landslide samples vastly outnumber landslide samples—complicates model training, often 

biasing predictions towards the majority class and diminishing the sensitivity to detect actual 

landslide events. 

Moreover, the spatial and temporal variability of triggering factors such as rainfall, seismic 

activity, and land cover changes complicate the construction of robust predictive models. While 

ML/DL algorithms offer promising capabilities in capturing complex non-linear patterns, their 

performance heavily depends on the temporal granularity and completeness of input data. This 

is especially critical in hazard forecasting, where the goal is to anticipate potential landslide 
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occurrences ahead of time rather than merely mapping their spatial susceptibility. Hence, the 

integration of time-series data and dynamic environmental variables becomes crucial in 

advancing from static susceptibility assessments to actionable, real-time hazard predictions. 

The overfitting phenomenon remains a prominent concern across many studies. Models 

trained on limited, highly specific datasets may exhibit high apparent accuracy during internal 

validation but falter when applied to different regions or under varying environmental 

conditions [24]. This suggests that many models may inadvertently learn site-specific features 

rather than generalizable patterns associated with landslide mechanisms. Consequently, model 

robustness and transferability remain underdeveloped, presenting a significant barrier to 

widespread operational deployment. 

Another challenge arises from the diverse nature of terrains where landslides occur. 

Variations in geological formations, vegetation cover, climatic conditions, and land use patterns 

imply that a model effective in one setting may perform poorly elsewhere without substantial 

retraining or adaptation. The difficulty in generalizing across such heterogeneous contexts 

underscores the necessity for methodological innovations that explicitly address environmental 

variability. 

In response to these challenges, several future research directions emerge. One promising 

avenue involves the development of more sophisticated model architectures specifically 

designed to mitigate overfitting and enhance generalization capabilities. Techniques such as 

regularization, dropout layers, and ensemble methods offer mechanisms to prevent models from 

becoming overly specialized to training datasets. Equally important is the need for 

comprehensive comparative studies that benchmark diverse algorithms across standardized 

datasets and evaluation protocols, thus providing clearer insights into their relative strengths 

and weaknesses. 

Data augmentation strategies also warrant further exploration. While data augmentation is 

a well-established technique in image-based machine learning, its application in geospatial 

landslide studies remains limited. Innovative approaches to artificially expand training 

datasets—such as generating synthetic landslide samples, perturbing input features, or utilizing 

generative adversarial networks (GANs)—could alleviate issues related to sample scarcity and 

improve model resilience. Although GANs have recently been explored for semantic 

segmentation tasks in geospatial applications, their potential in enhancing classification 

performance is equally compelling. Specifically, conditional GANs (cGANs) can be trained to 

generate realistic synthetic landslide and non-landslide examples conditioned on specific input 

features, thereby enriching the diversity of the training set. By addressing the severe class 

imbalance often seen in landslide datasets, such synthetic augmentation helps mitigate model 

bias toward the majority class. This, in turn, can lead to improved generalization and 

classification accuracy, particularly in detecting minority-class events like actual landslides. 

Moreover, the ability of GANs to preserve the statistical characteristics of complex spatial 

features makes them a powerful tool for producing high-fidelity training samples that reflect 

real-world variability in terrain, lithology, and triggering factors. 

Transfer learning and domain adaptation represent another frontier with considerable 

potential. Transfer learning enables models trained on data-rich environments to adapt and 

perform effectively in data-poor regions by leveraging previously acquired feature 

representations [25]. Early applications of transfer learning in landslide detection suggest that 

pretrained networks, especially those originally trained on natural scene datasets, can be fine-

tuned with relatively small amounts of site-specific data to achieve competitive performance. 

Domain adaptation techniques further enhance this by systematically aligning feature 

distributions between source and target domains, thus facilitating model transfer across 

disparate terrains without exhaustive retraining. 
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The integration of multimodal remote sensing data continues to demonstrate significant 

promise for advancing landslide modelling efforts. Studies consistently show that fusing optical 

imagery with LiDAR-derived topographic data and SAR-based deformation measurements 

enhances both spatial agreement and predictive accuracy [10]. This fusion exploits the 

complementary strengths of each data type: optical imagery captures land cover and surface 

reflectance characteristics; LiDAR offers precise elevation and slope information; and SAR 

detects subtle ground displacements indicative of incipient failure. Multimodal fusion thus 

enables a richer and more nuanced characterization of landslide conditions than any single 

sensor modality alone. 

Nevertheless, effective multimodal data fusion requires addressing challenges related to 

data co-registration, resolution mismatches, and sensor-specific noise characteristics. Advanced 

techniques such as feature-level fusion, attention mechanisms in deep learning, and the use of 

encoder-decoder architectures specifically designed for multimodal inputs could further refine 

the integration process and maximize its benefits. 

In sum, while machine learning and deep learning techniques have substantially enhanced 

the capacity for landslide detection and prediction, realizing their full potential demands 

sustained efforts to overcome persistent limitations. Robust model design, rigorous validation 

against independent datasets, strategic use of transfer learning and domain adaptation, and 

comprehensive multimodal data integration emerge as critical strategies for advancing the field. 

These directions not only promise improvements in model accuracy but also offer pathways 

toward more scalable, generalizable, and operationally deployable landslide early warning and 

risk management systems. 

The urgency of these improvements is underscored by the increasing frequency and severity 

of landslide events driven by climate change [3]. As extreme rainfall events and rapid 

temperature fluctuations become more common, landslide hazards are expected to escalate, 

necessitating the availability of accurate and adaptable predictive tools. Thus, advancing 

machine learning methodologies for landslide modelling is not merely an academic pursuit but 

a pressing imperative for disaster risk reduction and resilience building at global, regional, and 

local scales. 

 

Conclusion 
This study systematically reviewed and synthesized recent advances in the application of 

machine learning (ML) and deep learning (DL) techniques for landslide detection, susceptibility 

mapping, hazard forecasting and temporal forecasting. The results demonstrated that 

traditional machine learning algorithms such as Support Vector Machines (SVM) and Random 

Forests (RF) continue to deliver strong predictive performance, often exceeding 85% in accuracy 

and achieving high AUC values. However, deep learning architectures, particularly 

Convolutional Neural Networks (CNN) and U-Net models, have shown superior capabilities in 

segmentation tasks, offering enhanced generalization across diverse spectral and environmental 

conditions. 

Despite these advancements, persistent challenges were identified, notably limited labelled 

data, severe class imbalance, and difficulties in model generalization across varied terrains. 

These issues contribute to overfitting and restrict the operational deployment of current models. 

The discussion emphasized the need for more robust model architectures, improved data 

augmentation techniques, and the strategic application of transfer learning and domain 

adaptation methods to enhance reliability, particularly in data-scarce regions. Furthermore, the 

integration of multimodal data—combining optical imagery, LiDAR, and SAR—was highlighted 

as a critical advancement that significantly improves model robustness and spatial agreement. 
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The contributions of this study are twofold. First, it consolidates fragmented knowledge 

across multiple domains, providing a structured and comprehensive assessment of the field’s 

current state. Second, it identifies key methodological gaps and proposes clear future research 

directions aimed at enhancing model performance, generalization, and applicability. 

In light of the escalating landslide risks driven by climate change, improving the scalability 

and accuracy of ML-based landslide models is increasingly vital. Future research should 

prioritize developing transferable models, leveraging multimodal fusion techniques, and 

expanding global landslide databases. Advancing these areas will significantly strengthen early 

warning systems, risk management strategies, and ultimately contribute to reducing landslide-

related losses worldwide. 
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